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1. Introduction

Kernel methods are commonly used in the field of pattern recog-
nition. For example, the authors of Ref. [1] have developed a support
vector machine (SVM)-based face detector that works in real time
on video data, and Ref. [2] uses SVMs for the tracking of humans
with extensive pose articulation. Moreover, unsupervised detection
of brain activation patterns is explored by [3] using one-class SVMs.
The authors of Ref. [4] determine structured error patterns in mi-
croarray data using probabilistic kernel methods, and Ref. [5] uses a
similar approach for processing motion capture data. Many such pat-
tern recognition methods use SVMs for binary classification [6-8].
However, kernel methods are also employed for multi-class classi-
fication [9], regression [10], novelty detection [11], semi-supervised
learning [12] and dimensionality reduction [13]. Gaussian processes
(GPs) are the Bayesian versions of kernel methods. They have also
been applied to classification [14,15], regression [16,17] or dimen-
sionality reduction [18]. All these kernel methods are built around
some common notions and objects, which are explained in this pa-
per in a simple unifying way.

As depicted in Fig. 1, support vector machines can be thought
of as follows. They first map the training and test input data into a
potentially infinite dimensional feature space, a reproducing kernel
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Hilbert space (RKHS), and then classify the data with the help of a
separating hyperplane. Since there are often many hyperplanes that
separate the training data points, SVMs select the hyperplane with
the largest margin, that is, the largest distance between the hyper-
plane and the data points. However, what is the intuitive meaning
of distance in this feature space? One way to understand such dis-
tances is to explicitly choose a specific feature function @ of which
all components have some problem-dependent meaning. However,
often the RKHS and its corresponding norm are only defined implic-
itly via the choice of a kernel function k(x,y)= di(x)be(y). In this case,
the interpretation is not as straightforward. It was noted by Ref. [19]
that any kernel function is related to a specific regularization opera-
tor. The present paper explains this connection in a simple but very
general form, and we show how it can help to better understand
SVMs and other related kernel machines.

Furthermore, it turns out that for the commonly used Gaussian
(RBF) kernel, the feature space is a subset of the space of all functions
from the input domain to the real numbers, and the corresponding
regularization operator is an infinite sum of derivative operators [20].
We generalize this result and show that all translation-invariant ker-
nel functions are related to differential operators. The corresponding
homogeneous differential equations (DEs) are a useful tool for un-
derstanding the meaning of specific kernel functions. However, we
could also exploit this relation in the inverse direction and construct
kernels that are specifically adapted to problems involving DE mod-
els. To make this point clearer, let us consider a simple regression
example from physics, which can be visualized easily and which we
will thus use throughout the paper. Assume that we have acquired
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Fig. 1. Support vector machines map input data points via @ into a potentially
infinite dimensional feature space. The classification then proceeds by finding the
separating hyperplane with the largest margin between the classes. However, what
is the meaning of distance in this feature space? Especially if the feature space is
only defined implicitly via a kernel function k(x,y) = tb(x)Tdi(y)?.

time

Fig. 2. (left) Schematic view of a pendulum, and (right) 50 noisy measurements of
the pendulum’s angle ¢(t;) at times t;, i=1,...,50.

measurements of a pendulum’s position at given time instances, as
depicted in Fig. 2. We are then interested in two problems:

Firstly, we will discuss how to optimally reconstruct the full time
course of the pendulum’s position. The pendulum’s dynamics can be
described approximately by a simple linear DE, and estimating the
full state trajectory from few measurements is equivalent to classical
state estimation in linear dynamical systems. For this task one typi-
cally employs a variant of the Kalman filter. On the other hand, the
problem of reconstructing a function from a finite number of mea-
surements is also the goal of non-parametric regression techniques,
such as the kernel-based methods support vector machines/support
vector regression (SVR) or GP inference. In this paper, we will show
how the knowledge of a model DE can be included into kernel meth-
ods, and that these are closely related to Kalman filter-based ap-
proaches.

Secondly, we will explore how to learn about properties of the
pendulum from the given measurements. In particular this will aim
at determining parameters of the DE that characteristically describes
the pendulum, a task that is commonly known as linear system iden-
tification. We will show how model selection methods for kernel
methods such as cross-validation or marginal likelihood optimiza-
tion can be used for system identification purposes. As for state esti-
mation, these machine learning-inspired approaches turn out to be
equivalent to other well-known system identification methods, such
as prediction error methods.

Having these two objectives in mind, we will first describe ker-
nel methods in a relatively broad way that is not specifically tailored
towards DEs. However, this framework will allow us to straightfor-
wardly understand the close links between linear DEs and kernel
methods as a special case. We mostly focus on ordinary linear DEs,
also known as dynamical systems, but will also give examples of lin-
ear partial differential equations (PDEs). Other linear operator equa-

tions could also be dealt with similarly. By DEs we will in this paper
always mean stochastic DEs, since these can be nicely incorporated
into kernel methods. Stochastic DEs are a superset of normal DEs,
since any DE can be converted into a stochastic DE by setting the
noise level to zero.

1.1. Finite domains

The current paper is formulated in terms of finite domains. Func-
tions to be estimated are assumed to map finite domains to R or R".
In the pendulum example imagine time to be discretized into many
small time steps. The use of finite domains thus means that when-
ever we speak of DEs in this paper we actually mean discretized ver-
sions thereof, that is, the corresponding finite difference equations.

In the authors’ opinion, finite domains are just the right level of
simplification needed for an easy, yet very far-reaching exposition of
the matter. The restriction to finite domains simplifies the required
mathematics dramatically. Functions on finite domains are finite di-
mensional vectors, requiring only simple linear algebra for analysis
instead of more involved functional analysis. Existence and conver-
gence of sums/integrals is trivial for finite domains, and point eval-
uations are described by inner products with unit vectors instead of
functionals involving Dirac-delta distributions. Finite domains also
allow one to define Gaussian densities for function-valued random
variables. This is not possible for infinite dimensional functions, at
least not with respect to the standard Lebesgue measure, which does
not exist for infinite dimensional function spaces [21].

Despite these important simplifications, little qualitative expres-
sion power is lost. Most well-known results on kernels can be eas-
ily derived and motivated for finite domains. Reasonably smoothly
varying functions can be approximated well by their finite dimen-
sional piecewise-linear counterparts, which, in most cases, allow DEs
to be converted straightforwardly into qualitatively equivalent finite
difference equations. Finally, there are also some common settings
for machine learning that naturally deal with finite domains, for ex-
ample graph-based or transductive learning.

There are, of course, also certain shortcomings of a finite domain
approach. Generally speaking, we cannot answer questions regard-
ing the limiting behaviour for ever smaller discretization steps. Note
that while such limiting processes on continuous domains typically
exist, see e.g. Ref. [22] for one-dimensional domains, they often have
some additional surprising properties, some of which are at first sight
in conflict with our understanding of the corresponding model for
finite domains. For example, the sample paths of Brownian motion
are continuous, yet nowhere differentiable [22]. This implies that the
corresponding RKHS norm, defined below, is infinite for each sample
path almost surely. While the RKHS is thus a null space under the
measure of the continuous time process, the mean of non-parametric
regression with a finite number of data points is nevertheless guar-
anteed to be an element of the RKHS, a very surprising fact. Also, if
we define our models via discrete regularization operators or inverse
covariances as defined below and then take the limit of step size to
zero, then the marginal distributions of these continuous processes
are often not identical to the finite distributions. For example, for the
linear difference equation x; = (1 + AAt)x;_1 the exact discretization
of the continuous analog would be x; = exp(AAt)x;_1. While these
expressions are similar for small step sizes At they are not identical.
This fact is sometimes important for computational reasons, since by
construction the discrete models often have some sparsity structures
in the inverse covariance and these are not, in general, preserved for
the marginals.

The aim of this paper is to offer a simple intuitive introduction
to the kernel framework and to show its connections to DEs. We
thus concentrate solely on finite domains. Note that this means that
when speaking of processes in this paper, we just mean distributions
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over functions on a given fixed finite domain. We do not make state-
ments about what happens if one or more points are added to the
domain of the model, and the defined processes are not assumed to
be marginals of their continuous analogs.

1.2. Overview

The remainder of the paper is structured as follows: after intro-
ducing some notation in Section 2, we define in Section 3 a frame-
work of basic objects used in kernel methods, and we explain how
these objects are interrelated. Thereafter, we describe the use of
these objects for SVR in Section 3.2, for GP regression in Section 3.3,
and for vector-valued regression in Section 3.4. In Section 4, we dis-
cuss a typical kernel-machine regression model and show its rela-
tion to linear stochastic DEs. We demonstrate how to develop kernel
functions from linear state-space models or higher-order DEs. We
show that the resulting inference methods are equivalent to Kalman
filter-based methods. The pendulum and other examples are pre-
sented in detail in Section 5. In Section 6 we discuss the practical im-
plications of the link between kernel machines and linear stochastic
DEs. We summarize our conclusions in Section 7.

For better readability, we have restricted the main part of the pa-
per to real-valued kernels, and postpone the more natural, slightly
more technical treatment involving complex numbers to Appendix
A. It will appear throughout the text that, with regularization the-
ory in mind, conditionally positive definite (cpd) kernels arise quite
naturally. We have transferred all parts dealing with cpd kernels to
Appendix B, where we present an extension of the kernel framework
to cpd kernels.

1.3. Related work

Most of the mathematical results of this paper are not the authors’
original work, but have been mentioned in different contexts before.
Our contribution is to reformulate them in a unified, easily under-
standable framework, the simple language of finite domains. Fur-
thermore, we reinterpret them to highlight parallels between kernel
methods and linear DEs.

There is a large body of literature on kernels and DEs in many
different communities, and we only cite some relevant books con-
taining overviews of their respective fields as well as further refer-
ences. Many machine learning-related facts about kernels and reg-
ularization methods are taken from Ref. [8], as well as Ref. [23] for
the Bayesian interpretation. Sources in the statistics literature in-
clude [24,25], and in approximation theory [26]. For an overview of
linear stochastic dynamical systems and their estimation we refer to
Ref. [27].

The connection between stochastic processes and splines was
first explored in Ref. [28]. It is also well known that thin-plate/cubic
splines minimize the second derivative [29,26]. Connections between
regularization operators and kernel functions are explained in Refs.
[20,30], and general linear operator equations are solved with GPs in
Ref. [31]. A unifying survey of the theory of kernels, RKHSs, and GPs
has been undertaken by Ref. [32]. However, they do not use finite
domains, which complicates their study and they do not mention
the link with differential or operator equations. Approaches that
directly employ kernel methods towards the estimation of stochastic
DE models are proposed in Refs. [33,34].

2. Notation

We consider functions f : £ — R, where the domain % is a finite
set, |2| = N. When considering dynamical systems we will typically
set 4" to be an evenly discretized interval and assume N to be large.
Other examples of finite domains are discretized regions of higher

dimensional spaces, but also finite sets of graphs, texts, or any other
type of objects.

We denote by # the space of all functions f : 4 — R. fis
fully described by the [R{N—vectorf =(f(xq1), ... ,f(xN))T. Vectors and
matrices are denoted in bold font, but if an element of J# is thought
of as a function from % to R, we use the corresponding normal
font character. For points xj ¢ Z we define location vectors/functions
by dx; = (5,-]-)],:1 N where 5ij is the Kronecker symbol. The inner

product of these with a function f € # yields 5,];,. f =f(xi). Thus,
location vectors correspond to Dirac-delta functions centred at the
point x; for continuous, infinite domains.

Linear operators G : # — . are isomorphic to matrices in
RN*N Therefore, any function g : Z x 2 — R uniquely determines a
linear operator G : # — J# through G;; = 5; Gﬁxj =g(xi,x;) and vice
versa. The columns of G will be noted by Gy; = Gdy;; they are real-
valued functions on Z'. For a set X = xjli=1, m} c % of points,
Gy will denote the m x m submatrix of G corresponding to X.

3. The kernel framework

In non-parametric regression, we are given observations (xj, i) €
Z xR, i=1,...,m, m<N, and the goal is to predict the value y.
for arbitrary test points x. € Z. SVR estimates a prediction function
¥ — R, yx =f(x4), as the minimizer of a functional like

min R I + C Loss({(xi,yi, f(xi)li=1,...,m})). (1
fen

On the one hand, f should be close to the observed data as mea-
sured through a loss function Loss : (Z x R x R)™ — R. On the other
hand, f should be regular as measured by the regularization operator
R: # — 9, where % is any finite dimensional Hilbert space. These
two objectives are relatively weighted through the regularization pa-
rameter C. Note that SVMs also use the same setting for binary clas-
sification. The classes are represented as y = +1. First a real-valued
function f : & — R is estimated and then thresholded to obtain
the binary class predictions. Unlike radial basis function networks
[20,35], SVMs use the hinge loss [yf(x) — 1|+ where |x|+ =x if x>0
and |x|+ = 0 otherwise.

Many questions arise around objective (1). How are ||Rf |2 and
the commonly used function space norm | f \|12< related? This will
lead to the notion of RKHSs. The N-dimensional problem (1) can be
solved using a smaller m-dimensional equivalent involving kernel
functions. But how does R relate to the chosen kernel function? Can
one interpret (1) in a Bayesian way? For example, with the help of
GPs? The current section will answer the above questions in a simple,
yet precise way for finite domains. We will furthermore show the
interrelations between the terms mentioned above.

Throughout the main part of this paper we assume that R is a one-
to-one operator. This will lead to a framework with positive definite
kernels. If R is not one-to-one, cpd kernels arise. All definitions and
theorems derived for the positive definite case in the current section
are extended to the cpd case in Appendix B.

3.1. Regularization operators, kernels, RKHS, and GPs

Fig. 3 depicts the most common objects in the kernel framework.
We will explain them below, starting with the covariance operator.
The covariance operator is not commonly used in the kernel liter-
ature, but we introduce it as a useful abstraction in the centre of
the framework. While it does not in itself have a special meaning,
it helps us to unify the links between the other “leaf” objects. With
the covariance operator in mind, the reader may then easily derive
additional direct links.
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Fig. 3. Common objects in the kernel framework and their interrelations. Arrows
denote that one can uniquely be determined from the other (the * denotes that this
connection is not unique).

Definition 1 (Covariance operator). A covariance operator K is a posi-
tive definite matrix of size Nx N, i.e. for all fe#, f # 0, itis f TKf> 0.

A first interpretation of the covariance operator which gives K its
name is given through its use in GPs.

Definition 2 (Gaussian process). A GP is a distribution over all func-
tions f : 4 — R such that for any linear functional w : # — R
the value w(f )= wTf is a real-valued, normally distributed random
variable.

This definition taken from Ref. [21] is tailored to the case where
f is infinite dimensional, and no Lebesgue density exists in . #. For
finite %, it simply implies that the distribution has a density pg(f )
over the functions in 5, and that this density is a multivariate Gaus-
sian. Note that this means that in the finite dimensional setting, dis-
tributions over functions can be described via standard multivariate
Gaussian distributions. Given a covariance operator K we can define
a special zero mean GP by

pi(f)=N(0,K)  exp(— 1 fF TK £ 2). )

Conversely, given a GP, its covariance matrix is a valid positive def-
inite covariance operator.

The covariance operator also allows one to define another well-
known object.

Definition 3 (Kernel function). A symmetric functionk : Z'x 24 — R
is called a positive definite kernel function, if for all subsets X € %,
X =1{X1,....,xm}, m<N, and all 0 # « € R™, it holds that

m m m T m
Z Z oiogk(xi, X;) = a Kyo = Z widx; | K Z %dy; | >0.
i—1j=1 i=1 i1

By definition, kernel functions give rise to a positive definite co-
variance operator K. Conversely, a covariance operator K defines
a kernel function through k(xi,xj) =K i= 6;i1(5xj, since positive def-
initeness of K implies that Ky, too, is positive definite for all X € %.

Kernel functions naturally lead to the definition of specially
adapted function spaces.

Definition 4 (Reproducing Kernel Hilbert Space). A Hilbert space
(&, (.,.)s), & < A, of functions f : F — R is called a RKHS, if the
evaluation functionals dx; : # — R defined by ox;(f) = 5Iif:f(xi)
are continuous for all x; € &, i.e. [ox;(f)I<C| f |Ig for all f € 7.

As for the definition of GPs, this formulation of the definition
of RKHSs is tailored towards the continuous domain case. The
definition ensures that point evaluations of functions in ¥ are
well-defined, which is not obvious for functions on continuous do-
mains, for example, Ly functions. Well-defined point evaluations
are, of course, necessary for machine learning methods that deal
with point-wise data measurements. In the finite domain setting,
the definition of RKHSs is quite trivial. It implies that 5 with
any inner product (.,.)s is an RKHS, also with the usual L, inner
product. The proof is found in Appendix C, together with the proof
of the following lemma which summarizes some useful results
about RKHSs.

Lemma 5. The following statements hold for RKHS (A, (.,.)s):

(1) There exists a unique element Sy; € A for each x; € Z, the repre-
senter, such that

0xi(f) = f(xi) = (Sx;.f )s

for all f € . This property is called the reproducing property.
(2) The function s : 4 x & — R defined by s(x,',xj) = (Sxi,ij )sisa
positive definite kernel function in the sense of Definition 3.

Let the operator S : # — # be defined by Sij= s(xi.xj).

(3) Any inner product ( f,g)s can be uniquely expressed in the form
I TTg where T is a positive definite operator.

(4) s(xi,xj) = Ti]Tl or equivalently S =T 1.

(5) The kernel s defines the inner product (.,.)s uniquely.

The above lemma implies that for a given covariance operator K
one can define an RKHS (7, (.,.)x) by setting

(f.ek=f"K g

Then the representer of this RKHS is identical with the kernel
function Kdy; derived from K via k(xi,xj)zl(,-j. Since the relation be-
tween kernel and inner product is unique, one could also construct
a unique valid covariance operator from a given RKHS.

The definitions so far have been purely technical, but we can give
them a practical meaning when considering them in conjunction
with a regularization operator as used in the SVR objective (1).

Definition 6 (Regularization operator). A regularization operator R :
A — 9 is a one-to-one linear operator. Here, % is any finite dimen-
sional Hilbert space.

If we use K = (RTR)’], then by Lemma 5 it is
If 1% =FTK~1f =fTRTRf = |Rf |12.

That means that if |Rf|| measures the regularity of f : Z — R, then
the RKHS norm exactly equals the regularity measure. In the SVR
objective (1) regular functions are thus preferred over less regular
ones. Furthermore, the related GP is

pk(f)=N(0,K) o exp(— 3 IR %)

implying that under this distribution regular functions are more
likely than less regular ones. The most likely functions are those
which exactly fulfill the regularity/model equation

Rf =0.

Note that since R is assumed to be one-to-one, only the zero func-
tion can fulfill the model equation exactly. Non-vanishing functions
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Table 1
Summary of the objects of the positive definite kernel framework and their inter-
relations

Entity Symbol Relations
Kernel function k:Zx2Z—->R k(xi, x;) = K;j = 6;.1(,(]
Ky : 2 — R k(x,‘,Xj) = (KXi'KXj )k
k(xi, ;) = Oy, (R"R) ™'y,
k(xi, x;) = Covg_, (f(xi).f(x})
Covariance op. K:H—H Kij = k(xi,x;),
K=R"R)' = Covpp, (£.f)
RKHS () :H x H >R (f.e)x=F"K'g=f"R'Rg
Il # > R IF I = (£.F )¢ = IRF
Gaussian process pk:H — R px(f)=N(0,K)
pr(f) o exp(— 31 £ 1%)
Pr(f) o exp(—~ 3 1| RF 112)
Regularization op. R:H#—> Y (R= VKT, , not unique)

Covx-px)(%i, X;) denotes the covariance between x; and x; under a distribution of ¥
with density p(x). If the arguments are vectors, the corresponding covariance matrix
is meant.

violate this equation by an amount that is determined by the struc-
ture of R. If non-trivial functions are to be considered fully regular,
that is, |Rf || =0, then R cannot be one-to-one. This case is discussed
in Appendix B.

Given a covariance operator K, we can compute an associated
regularization operator R as R = vVK~!. However, note that if we
transform R — K — R in this way we will not necessarily recover the
same regularization operator we started from. The original R does
not have to be quadratic and even if it is, taking the root would set
all originally negative eigenvalues of R to positive.

The objects of the kernel framework and their interrelations are
summarized in Table 1.

3.2. Support vector machines

With the above definitions the SVR objective (1) can be rewritten
as

fn;'y'} £ I +C Loss(xiyi.f(xi)_y - .

This optimization problem over the whole function space J#, i.e.
over N variables where N is potentially large, can be reduced to a
typically much smaller m-dimensional optimization problem using
kernel functions. To see this, we will derive the famous representer
theorem in two steps. The proofs are found in Appendix C.

The first step, which is interesting in itself, shows a general prop-
erty of RKHSs: Any function in an RKHS can be decomposed into
a set of kernel functions and its s#-orthogonal complement. If the

complement is understood as a function from Z to R, then it has
function value zero at all kernel centres.

Lemma 7. Given distinct points X= {xm’ =1,..., m}, m<N,anyf e A
can be uniquely written as f = Y"1 | 4iKx; + p, & € R™, where p € A
satisfies the conditions p(x;j) = (Kx;, p)x =0, i=1,...,m.

The second step then is as follows.

Theorem 8 (Representer theorem). Given m< N distinct points X =
{xi|i= 1, m} and labels iy,-\i: 1,...,m} C R the minimizer f of Eq.
(3) has the form fo = Z}llail(xi. o € R™ minimizes the expression

alKya + CLoss(xi, yi, fa(xi)) 4)

i=1,...m’

If the loss is convex, a is determined uniquely.

Remark. f can also be expanded in another function system, say
f= 2}21 ¢j¢j. Then min,_p; c'Mc + Loss(xi.yife(x)),_,  with

Mjj= ¢iTRTR¢j is the optimization problem corresponding to Eq. (1),
see e.g. Refs. [25,36]. This is also a convex problem and can some-
times be solved very efficiently if, for example, compactly supported
basis functions are used [36]. However, one only finds the optimal
solution within the span of the selected basis functions. A globally
optimal solution in s would, in general, require L = N basis func-
tions. Furthermore, M;; = qS;-rRTRqu has to be computed for all i,j
which could be challenging.

3.3. GP inference

The SVR objective (1) can also be interpreted from a Bayesian
perspective. Assume a two step-model where firstly a latent function
f 14 — Risdrawn from the GP prior pg(f) with covariance operator
K, and where subsequently the measurements are determined from
this function as described by a local likelihood p(y| f)=p(¥|fx ), where
y= (yl,...,ym)T and X = {xq, ..., xm}. A common example of a local
likelihood is the i.i.d. likelihood, that is, p(y|f) = [1;p(yil f(xi)). The
posterior for local likelihoods is

PUAIY.X) o (Y1 NPk() o< (Y1 Fx) exp(— L IRF 1),

and the maximum a posteriori (MAP) estimate is

arg maxp( f1y,X) = arg min 1 1RF 1% — log p( | fx)
fer fer

So if one can identify —logp(y|fx) with Loss({(xi,yi,f(xi))li=
1,...,m}), which is possible, for example, for the common squared
loss, then SVR is just a MAP estimate of a GP model. Note, however,
that in some well-known cases such as, for example, the hinge loss,
this identification is in a strict sense not possible. The resulting like-
lihood would not be normalizable with respect to y. Nevertheless, if
one is willing to work with unnormalized models, the equivalence
holds in general. The qualitative meaning of the prior is the same in
any case.

Bayesian statistics is typically not only interested in the MAP
estimate of f(x,) but in the full predictive distribution,

PV o [ POLFOPKN A 7,

Here, we have used the notation that for every set [ = {Xiqs-eeuXif ) ©

Z, df; means df(xi ), ..., df(xi,). Because of the local likelihood we
can then split the N — 1 dimensional integral as follows:

PSP o [ plyifx) ( [ P dfgg\xe*) dfx.

=p(Fxuxs)

So if an analytic expression of the marginal pi( fx x, ) which is inde-
pendent of the data, could be computed, then only an m-dimensional
integral would have to be solved for inference. Such an expression
is given in the following theorem, which just expresses a standard
property of Gaussian distributions. Since it reduces the work from N
dimensions to m dimensions similar to the representer theorem 8,
one could call it the Bayesian representer theorem.

Theorem 9. Given m <N distinct points X = {x1,...,Xxm} € 4 the GP
pi(f) has the marginals

Pr(fx)= exp(— 3 fY Ky 'fx) = N(O.Kx).
(2m)™ K|

This property is often used to construct GPs: Given a kernel func-
tion k :  x & — R one stores the values corresponding to X into
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a square matrix Ky and sets p(fx)= N(0,Kx). Using standard for-
mulas for conditioning Gaussian distributions and block-partitioned
matrix inversion one can show that this construction is consistent,
ie forall X’ ¢ Z,XNnX =g it holds that p(fx)= [ p(fxux')dfx. By
Kolmogorov’'s extension theorem, or by simply using X = % in our
finite dimensional case, this yields a GP on all of %"

3.4. Vector-valued regression

Consider now regression from Z to R", n>1. We will show that
the kernel framework explained above can be easily extended to this
case. The function space of all functions f : Z — R" will be denoted
by #"'. We can represent such a function as a vector f in R™. Denot-

; T

ing the component functions by f' : 2’ — Ritis f = (f1 —-f "T)T.
T .

The standard inner product in #" is j_”Tg = Z};]fj gJ. The unit

vector QJ,'(,., i.e. the location vector for location x; and the j-th compo-
nent, then has the j-th component equal to dx; and all others equal

T .
to zero. It is 6,{1, f =f(xj). Linear operators A : #" — #™ are iso-

(Nn)x(

morphic to R Nm) matrices.

Theorem 10. The function space A" is isomorphic to the space H# of
all functions from & =% x {1,...,n} to R.

This obvious theorem includes all we need in order to work with
vector-valued functions: As 2 is a finite set, so is Z. All the above
theory on kernels, regularization operators, and GPs applies. For ex-
ample, using the regularization operator R : #" — ¥, the corre-
sponding kernel function is

Kt )™ = k(i D), () = Bl (RTR)™ 3. (5)

To construct a sensible regularizer R, a similarity measure between
points in Z is needed. Since in many applications it is not clear
how to compare different components of f, it is common to use a
block-diagonal regularizer R = diag(R?, ..., R"), i.e. regularizing each
component separately. The corresponding kernel function then has
the vector form
Ki=(0,...0.k}. 0,....0)

K;, yos 0, K5, ,0,...,0),

with the individual kernel functions K,JC (= (Rj'TRj )_1 dx; in the cor-
responding components. The joint covariance matrix K is block-
diagonal in this case. If the loss/likelihood term does not imply a de-
pendency between different components, such as, for example, the
quadratic loss, then each dimension can be treated separately. How-
ever, there are also numerous situations where a joint regularization
makes sense. Examples are shown in the next section.

The theory as described here was mentioned in Ref. [32]. Ref. [37]
introduces a slightly different formalism employing operator-valued
kernel functions in this context. However, the derived representer
theorem is equivalent to the simple approach presented here.

Note that one could also reorder the entries in f; for example,
we could define f = (f(xl)T, ...,f(xN)T)T. While in this section we
have used a special notation for vector-valued functions in order to
highlight the differences, we will from now on use normal vector
notation also for vector-valued functions to keep the notation simple.

3.5. Inhomogeneous regularization

As shown in the next section, there are numerous cases where
one would like to have ||Rf —u|, u # 0, as the regularizer in the SVR
objective (1) or equivalently use non-zero means for GPs.

Since for f=0, | Rf —u|=||u|| # O, |Rf —u| cannot be used as a norm
in an RKHS. To circumvent this problem, note that since R is assumed
to be one-to-one R~ u exists uniquely and can be computed without
regard to the measurement data. We can then base any inference on
f=f—Ru, adapting the loss term appropriately. The regularization
term then reads ||Rf || = |[Rf — u||, which represents a true norm for
f. The kernel framework can now be applied as described above.

4. Kernels and DEs

SVR and GP inference both use an a priori model that can be
expressed in the form

Rf ~ 0, (6)

Functions f : Z — R which fulfill Eq. (6) to a high degree as mea-
sured by ||Rf||, the two-norm of the residual, are preferred to func-
tions that significantly violate the equation.

In this section we discuss a common choice for R, namely linear
stochastic DEs. If the input domain is one-dimensional, one speaks
of ordinary differential equations (ODEs) or dynamical systems, and
for multivariate input these are PDEs. Since this paper is restricted to
finite domains, the term DE should be understood as meaning finite
difference equations throughout. In most cases, the differences are
negligible for discretization steps that are sufficiently small.

Linking DEs and kernel machines is useful both from a machine
learning perspective as well as from a perspective focused primarily
on work with DEs.

From a machine learning point of view, stochastic DEs can be
seen as an ideal prior model. They describe local properties of the
function f, that is, how the function value at one point relates to
function values in the neighbourhood. On a global level, stochastic
DEs do not constrain the function very much, because small local
noise contributions can add up over longer distances. Thus, this prior
is well-suited to situations where we a priori do not know much
about the global structure of the target function, but we assume that
locally it should not vary too much or only in a certain predefined
manner.

From a DE point of view, it is useful to have all the machin-
ery of kernel methods at hand. With these, one can estimate the
state/trajectory of the DE model, that is, the function described by
the DE. One can also estimate the DE or its parameters, a task com-
monly known as system identification. Both problems are ubiquitous
throughout natural science, statistics and engineering.

4.1. Linear state-space models

Linear state-space models are the most common models in the
class of ODEs, or dynamical systems [27]. They are classically given as
P

Xi =Ax;_1+Bu; + eg ),

M
yi = Cxi + Du; +€§- ),

i=1,....N—-1 (7)
i=1,....N—1. (8)

The model equation (7) states that the hidden states x;j ¢ R" follow
a stochastic difference equation with external user-defined control
uj R¥ and i.i.d. process noise eﬁ”), which is Gaussian-distributed
with mean zero and covariance Xp. The likelihood of the measure-
ments y; € R™ is defined via Eq. (8). The measurements are linear
combinations of the state and the control with additive i.i.d. Gaus-
sian measurement noise eiM with mean zero and covariance X;. The
initial state xg is independently Gaussian-distributed with mean g
and covariance X. Note that the assumption that the process noise
is Gaussian-distributed is in fact a very natural one if the finite differ-
ence equations ought to be discretizations of a continuous stochastic
model. In this case, the distribution of a finite difference model
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should not depend on the discretization step size. Suppose we split
one interval into M smaller steps; then the joint process noise in this

. . P P - .
interval is Z?i 1 35 ), where the 85’ ) are i.id. random variables. If the
variance of the sg Vis finite, then the sum will have a Gaussian distri-

bution for large M, regardless of the distribution of the sE-P). Thus, if
the process noise has finite variance, the only valid distribution that
can be refined on an ever smaller grid is the Gaussian distribution.

We now interpret the state-space model in terms of the kernel
framework.

Theorem 11. The linear state-space model (7) defines a GP over trajec-
tories x: & — R", & ={0,..,N — 1}. Mean and covariance for i,j € %
are given as

. l i
pi=Exi)=A'po+ Yy A~'Buy, 9)

K; j = E((x — p)(x) — pp)")
) ) min(i,j) ) )
=AZAT + S AlEpAllT (10)
=1

Proof (Dynamical systems view). Since all (conditional) distributions
of the x; are Gaussian, so is the joint distribution of x : # — R", i.e.
it is a GP. Furthermore, it is

i
xi =A% + ZA’*I(Bul + e;P) ).
=1

Using the independence assumptions, Egs. (9) and (10) follow. [

Proof (Kernel view). Eq. (7) can be written equivalently as

—1/2
*0 : 1/2 !
z, -A 1
-1/2 -A 1
2p
_1=
X0 DI / Ho
-1/2
SN T D I ey PP
XN-1 X l/zBuN 1
=X —u

where the deviations € € RV are ii.d. Gaussian-distributed with

mean zero and covariance one. Since, for any initial state xg there
exists exactly one solution of the system, i.e. one trajectory x that
follows Eq. (7), the R thus constructed is one-to-one and defines a
valid regularization operator. Using the theory from Section 3, the
model is then equivalent to a GP with mean u:R‘lu and covariance
K= (RTR)*l. Formulas (9) and (10) can be verified by checking that
Ry =uand K(R'R)=(RTR)K =1. O

The GP equivalent to Eq. (7) has the density
p(x) o exp(— 1 [Rx — u||?). (11)

This expression has a nice, simple interpretation: trajectories x that
follow the model DE (7) are a priori the most likely functions x : &' —
R", and deviations from the equation are penalized quadratically.
So far, we have shown that linear state-space models define GP
distributions on trajectories ¥ : £ — R". Whether any GP can be
written as a linear state-space model depends on whether the reader
considers models with state dimension N—or infinite state dimension

in the continuous case—as valid state-space models. An introduction
to infinite dimensional systems can be found in Ref. [38]. Imagine
an arbitrary GP p(z) = N(u,K) for z : & — R. One could simply
set Xg =z, i.e. ug = p, 2o = K, and then propagate with A =1,
ui =0, and Xp = 0. Alternatively, one could use the decomposition
p(2)=p(z9)p(z1122), ..., P(zN_1120) ---,ZN_2 ) to formulate a state-space
model. Since for arbitrary covariances K, we cannot assume special
Markov properties, we would need again an N-dimensional state-
space to represent the GP. For special K, however, this construction
may allow one to exploit Markov properties of the GP, and thus a
representation with a much lower state dimension.

4.2. Linear DEs and the Fourier transform

Kernel methods are often motivated via regularization in the
Fourier domain [8]. At the same time, derivative operators reduce
to simple multiplications in the Fourier domain. This leads us to ex-
amine more closely the connection between DEs and Fourier space
penalization in this section.

Assume %' to be the discretized real line, i.e. 2 ={i/hli=1,...,N},
h>0, and let L(1) = ’Loai},’ be an n-th order polynomial. Consider
the linear ODE

n
LD)f =Y aiDif =0, (12)
i=0

where D is the first derivative operator and f : Z — R. For the
remainder of the chapter we will assume periodic boundary condi-
tions, allowing the use of the discrete Fourier transform to express
the derivative operator. Periodic systems are in general not causal,
since random events in the future could propagate forward to influ-
ence the past. However, for stable linear systems these effects can
be neglected for large enough domains, because the contribution of
any state onto future state values decays to zero eventually. The
natural formulation of the Fourier transform in terms of complex
exponentials requires the use of complex-valued linear algebra. For
ease of presentation we have omitted this so far, however, all def-
initions and theorems can also be formulated with complex num-
bers, as sketched in Appendix A. We will also assume that L(D) is
one-to-one. Unfortunately, there are common examples where this
is not the case, e.g. for the second derivative used for thin-plate
splines. Regularization with non-one-to-one operators requires the
use of the cpd kernels as described in Appendix B. For discrete Z,
a straightforward approximation of the continuous derivative is the
approximate derivative operator D given as follows in the case of
periodic boundary conditions,

-1 1
(13)

D can be diagonalized in the Fourier basis, D= Z{;’zlukwku}g, where
wy, = 1/h(exp(i(2n/N)k) — 1) and 5Ijuk = exp(i(2n/N)jk). It is well-
known that functions of D can be computed by applying equivalent

operations to the eigenvalues of wy,. In particular, the corresponding
kernel function then is

K(x;,xtm) = (I(D) L(D));,! = &}, (L(D)' L(D))~ 3 (14)
N
_ T 1 g
a g Dt L(wk)L(wk)uk‘sxm (1)
N 2m
= Z w2 exp <1Wk(l - m)) . (16)
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Thus, the kernel k : Z x Z — R is the (discrete) Fourier transform
of g(wy) = 1/|L(Wk)\2. Since g is real-valued, the Fourier transform
of it is also real and additionally symmetric. The corresponding ker-
nel function then is real-valued and only depends on the distance
between x; and xm, d = |l — m|, that is, it is translation-invariant.

Let us motivate Eq. (12) from a regularization point of view.
High derivatives are described by polynomials L(1) of high order, in
which case |L(D)f ||2 = Zkauk|L(wk)\2u};f strongly penalizes high
frequencies. The corresponding kernel then contains few high fre-
quency components and is thus relatively smooth.

One can also discuss the reverse derivation from a translation-
invariant kernel function on % to a differential regularization oper-
ator. Translation-invariance implies that the covariance operator K
is diagonal in the Fourier basis. In order to derive a DE, invert the
eigenvalues of K, take the square root, and interpolate the result by a
polynomial L of at most degree N. Eq. (12) then yields the model that
is implicitly used when performing regression with this kernel. A fa-
mous example is the Gaussian kernel, k(x;,x;) o« exp(—|i — jl?/20?).
The discrete Fourier transform is difficult to compute analytically
in this case, so we approximate it with its continuous counterpart
for large N and small step sizes. The continuous Fourier transform
of a Gaussian is again a Gaussian with variance ¢—2. Inverting and
taking the square root, we derive a function exp((¢2/4)w?), whose
Taylor expansion is L(w)=Y_5° ; (62"/22"n!)w?". Replacing w by the
derivative 0,, we re-derive the result of Ref. [20]. They state that the
Gaussian kernel is equivalent to regularization with derivatives of
all (even) orders,

0 02n on
R=2022an ) (17)
n=!

A larger ¢ leads to a stronger penalization of high derivatives, i.e. to
smoother functions.

The introduction of the Fourier transform above also leads to a
discrete version of Bochner’s theorem [39]. While the original theo-
rem in continuous domains deals with positive semi-definite func-
tions, we can make a stronger statement involving positive definite-
ness for finite domains: A translation-invariant function k : #' x ' —
R, k(xi,x;)= ¢(i—j), is a positive definite kernel function if and only
if the (discrete) Fourier transform of ¢ is positive. Since the Fourier
transform of ¢ is identical with the eigenvalues of K, and we do not
have to be concerned with the existence and regularity of Fourier
transforms in finite domains, the result, in our case, is trivial.

4.3. Linear stochastic PDEs

A general form of discrete stochastic linear PDEs for f : 2’ — Ris

foiy=3 aifg)+a . xie, (18)

xje:/V i

where A ¢ 4 is the set of neighbours of x;, ajj € R, and € is
i.i.d. zero mean Gaussian noise with covariance Kj. Since Eq. (18)
is a linear equation system in f, it is a valid kernel model equation
(6). If the x; are placed on a regular grid and periodic boundary
conditions are assumed, the Fourier transform methods from the
previous section can also be applied for this multivariate setting.

Note that apart from being a discretized stochastic PDE, Eq. (18)
is also one form of writing Gaussian Markov random fields. Addition-
ally, graph-based learning involving the graph Laplacian can be writ-
ten in this form. This noteworthy fact implies that multiple methods
in physics, control theory, image processing, PDE theory, machine
learning and statistics all use the same underlying model.

4.4. State estimation and system identification using kernels

Both GP and SVR regression can be interpreted as optimal state
estimators if the kernel is chosen with respect to a DE as described
above. Both methods try to minimize the deviation of the estimated
trajectory from the DE Rf =0 and at the same time try to minimize
the distance to the measured data points, where the distance is mea-
sured either through a loss function in the SVR case or through a
likelihood in the probabilistic setting. An optimal trade-off between
these potentially contradicting targets is obtained. Furthermore, SVR
and GP regression can both be used for system identification. In SVR
one typically chooses the kernel to minimize the cross-validation er-
ror on the training set. In GP regression one tries to find the kernel
function that maximizes the marginal likelihood, that is, the com-
plete likelihood of the training data and latent function f : 2" —
R marginalized over the latents. Since each DE can be related to a
specific kernel function, optimizing for the best kernel in a class of
kernels derived from DEs is equivalent to choosing the most appro-
priate DE model for the given data set. More formally, assume, for
example, that we are interested in a DE model of the form

0o '
Le(D)f =" 01 D'f =0. (19)

i=0

Optimizing for the best parameters 0 of the corresponding kernel
function Ky = (LO(D)TLO(D))*] is equivalent to determining the best
differential model of the above form.

The possibility of using kernel machines to estimate the state
and the parameters of DEs has been noticed by Ref. [33] in a spline
context, and by Ref. [34] who use SVR and cross-validation.

Before discussing the practical implications of this matter, we
present some examples highlighting the kernel framework and its
connections to DEs.

5. Examples
5.1. The pendulum—state estimation

Consider again the pendulum in Fig. 2. According to Newton’s
third law, the free motion dynamics of the angle of the pendulum is
approximately described by the second-order linear DE

mi2g(t) + Ad(t) + mgld(t) = 0, (20)

where m is the mass of the pendulum, I the length, g the gravita-
tional constant and 4>0 a damping factor. Eq. (20) is only approx-
imately correct for two qualitatively different reasons. Firstly, it is
only the linearization around the rest position of a truly nonlinear
DE. The true gravitational effect is mgl sin(¢(t)) which for small ¢(t)
is similar to mgl¢(t). Secondly, there may be many, potentially ran-
dom influences on the pendulum which are not known or cannot in
principle be observed. For example, the viscosity of the surrounding
air could change slightly due to local temperature changes, or more
drastically a by-passer could simply hit the pendulum. Both model
mismatch and stochastic influences can be modeled as process noise
in a stochastic DE system, rendering this a versatile model.

Fourier space method: The pendulum equation (20) can be written
in the operator form

L(d,) f(x) = (02 + 10, + c2) f(x) =0, (21)

where | : # — it the identity operator. We discretize an in-
put interval into N = 4096 steps and apply the Fourier framework
from Section 4.2 to derive a translation-invariant kernel k(x,',xj) =
(L(D)TL(D))I;]. The resulting kernel and a GP regression with this
kernel for the pendulum data in Fig. 2 (right) is shown in Fig. 4.
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Fig. 4. (left) Kernel function k(x;,.) derived from the differential equation (20) describing a pendulum. Fourier space transforms with periodic boundary conditions were
used. The resulting kernel is translation invariant, x; is chosen in the middle of the interval. (middle) The 50 data points from Fig. 2, denoted by black crosses, are regressed
using a Gaussian process with the pendulum kernel, left, and a Gaussian i.i.d. likelihood. The solid red line denotes the mean of the posterior GP, the shaded area plus-minus
one marginal standard deviation of the function values. The dashed black line shows the true sample path from which the data points were generated. (right) GP regression
as in the middle figure; however, with a Gaussian kernel.

covariance operator GP regression Kalman smoother

time time

Fig. 5. (left) The covariance matrix derived from the differential equation describing a pendulum (20) using a state-space formulation with initial condition. Since the
state-space is two-dimensional the kernel function has for each position pair i, j four entries. Two entries describe the covariance within each component, the two others
the cross-covariances. (middle) Gaussian process regression using the kernel from the left figure and the 50 data points from Fig. 2. The solid red line denotes the mean of
the posterior GP, the shaded area plus-minus one marginal standard deviation for the function values. The dashed black line is the original sample path. (right) Equivalent
results produced by a Kalman smoother.

Observe that the GP regression with the kernel adapted to the
pendulum is able to nicely follow the true sample path (middle).
While a GP regression with a standard Gaussian kernel yields com-
parable results in regions where many data points are observed,
it performs much worse in the middle where no observations are
recorded. This can be explained as follows. Since the a priori model
of f in terms of a stochastic DE, Rf = € ~ N(0, 621), allows violations
of the exact DE Rf =0, multiple observations can override the model.
However, in regions with no observations the prior is more impor-
tant. Since the Gaussian kernel encodes for the wrong prior model
(17) its predictions are especially bad in these regions.

State-space view: The pendulum equation (20) can equally be
written as a state-space model with a two-dimensional state, n = 2.
Then it is =70 . . ) ) ]

0 1 20 40 60 80 100
A_h<_}v/mlz _g/l)+1, C=(10), B=D=0, .

K=(O (,(p).z), H=0M2,

where we used N =4096, h = 0.003, yg = (0.2,0. 1)T, 2o = 1031,
/l/ml2 =25,g/l=1, ¢ =0.085, and ‘M) = 0.02. The data samples
for the pendulum—see Fig. 2 (right)—were drawn from this model.

The covariance operator for this state-space model computed by
Eq. (10) is colour-coded in Fig. 5 (left). Observe the oscillations when
fixing a row or column which corresponds to fixing a kernel centre
xi and observing the kernel function Ky;. Fig. 5 (middle) shows the
marginal posterior mean and variances when performing GP regres-

= log p (Y[X)
1
(6]
o

|
]
o

Fig. 6. The negative log marginal likelihood of a Gaussian process regression for
the pendulum data set in Fig. 2. Different parameters c; are used for the pendu-
lum-adapted kernel in Fig. 4. The minimum of the negative log marginal likelihood
is obtained for ¢y min = 27.5, the true value is ¢z e = 25.

5.2. The pendulum—parameter estimation

In Fig. 6 we show results from a simple system identification
task, i.e. determining the parameter c; of the pendulum model (21).

sion using the kernel from the left figure and the data from Fig. 2
(right). Note that the results are up to numerical errors identical to
the solution of a Kalman smoother [40], as shown in Fig. 4 (right).
This fact is discussed in more detail in Section 6.

We use the pendulum kernel in Fig. 4 and maximize the marginal
likelihood of a GP regression model for the optimal value of cy,
where ¢q is assumed to be known. The maximum is attained for a
value ¢y close to the true model. We also computed the marginal
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harmonic regularization

thin-plate spline reg.

Fig. 7. For a two-dimensional domain Z with periodic boundary conditions, the kernel functions Ry, for harmonic and thin-plate spline regularization are shown in the top
row. x; is chosen in the middle of Z. Below we show the mean of a GP regression with these kernels and five data points, denoted as black stars.

likelihood for GP regression with a Gaussian kernel. The maximal
marginal likelihood for a Gaussian kernel with automatically chosen
parameters is 20 orders of magnitude smaller than for the pendulum
kernel. In a Bayesian interpretation the data thus strongly prefers a
pendulum-adapted model over the standard Gaussian kernel model.

5.3. Two-dimensional PDEs

In this section we discuss kernels for two-dimensional domains.
We show how the harmonic and the thin-plate spline regularizer
that both build on derivatives and can be interpreted as stochastic
PDEs can be incorporated into the kernel framework.

Next, we show examples of harmonic and thin-plate spline reg-
ularization in the kernel framework.

As mentioned in Section 4.3, the Fourier transform can also be
applied for functions on higher-dimensional domains, and deriva-
tive operators can also be translated into multiplications in this set-
ting. Consider a rectangular grid with N2 = 2562 points and periodic
boundary conditions. The discrete derivative D! in the first direction
and the derivative D? in the second direction are both diagonal in
the tensor Fourier basis U1 U, where (6,(1 ® Oxp )Tuk1 QU =
exp i((27r/N)(lk1 + mkz)) and the eigenvalues are Wil gi2 = Wia Wi,
kL k2=1,...,N.

Harmonic regularization results from penalizing the Jacobian of
f+ & — R, that is, all first derivatives,

R=(g;>.

This results in ||Rf||2 =f TAf, where A :DlTD1 + DZTD2 is the (dis-
crete) Laplace operator. Functions minimizing this expression, the
so-called harmonic energy, effectively minimize the graph’s area and
are thus very common in many fields of research, especially com-
puter graphics [41]. Since constant functions are not penalized by R,
the cpd framework for non-one-to-one R has to be used in this case,
see Appendix B. Postponing a more detailed discussion, the most
important change here is to use the pseudoinverse instead of the
inverse for deriving the kernel, K = (RTR)*. This operation is easily
performed using the two-dimensional fast Fourier transform.

The thin-plate splines energy penalize the Hessian of f : ' — [,
that is, all second derivatives,

plp!
Dp'D?
Dp2p!
D?D?

The energy leaves linear functions unpenalized, thus we again have
to use the cpd framework and correspondingly the pseudoinverse.

In Fig. 7, we show the resulting kernels for harmonic and thin-
plate spline regularization. Furthermore, we show results of approx-
imating five randomly chosen data points with a GP regression with
the respective kernels. Note that the harmonic kernel is sharply
peaked, but the regression output stays in the convex hull of the
training output values, the famous mean value property of harmonic
maps. The thin-plate spline solution is much smoother, but occa-
sionally overshoots the training values.
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Fig. 8. Kernel corresponding to a graph Laplacian as regularizer R'R. The kernel functions Ry; are encoded in the colour and the size of the nodes. Vertex x; is marked with

a black cross, the edges of the graph are shown in black.

5.4. Graph Laplacian

Since graph domains are naturally finite, graph-based learning
is a good example of where the finite domain kernel framework
directly applies without the need for discretization.

The graph Laplacian is an approximation of the true Laplacian A
on graphs [42]. Kernels on graphs based on the graph Laplacian are
described by Ref. [43], they are used for semi-supervised learning by
Ref. [44] and Ref. [45] use them in GPs on finite image domains for
image super-resolution. The graph Laplacian A for a graph G=(E, %)
with edges E and vertices % is given by Ag =D — W, where Wi is
the weight of edge (i,j) € E, 0 if (i,j) ¢ E, and the degree matrix D is
diagonal with entries Djj=3};W;;. We use an e-neighbourhood graph

constructed from 40 random points in [0,1]2, e=0.2,1e. (i,j) e E
if and only if ||xj — xjll <e. Edge weights W;; are set as W;; = exp
(—lIxi — x;11%/e2).

As in the above section, setting RTR = A leads to the problem
that A is not one-to-one. Functions f constant on a connected com-
ponent havefTAsz 0, a fact commonly used in spectral clustering
[46]. Thus, in order to derive a kernel we again use the pseudoin-
verse. For more details see Appendix B.

Fig. 8 shows the resulting kernel function Ky;. The closer a point
is to xj the larger its corresponding kernel values. Equivalently, under
the corresponding GP prior the correlation of the function value at a
certain point with the function value at x; is the stronger the closer
the point is to x;. Note that the distance is measured in terms of the
geodesic distance intrinsic to the graph, not the Euclidean distance
of the embedding space.

6. Discussion

We have shown that common linear DE models can be flawlessly
integrated into the kernel framework and that trajectory/state esti-
mation and system identification can both be performed with kernel
machines such as SVR or GP regression. However, there are already
many well-established algorithms for state estimation and system
identification. In this section, we discuss how kernel methods relate
to these standard methods, and when one should prefer which type
of algorithm.

State estimation in the linear state-space model described in Sec-
tion 4.1 is classically dominated by the Kalman filter/smoother [40]
and its variants [27]. For such models the Kalman filter algorithm is
also equivalent to graphical model message-passing algorithms [47].
Since all these models perform optimal state estimation in the state-
space model as do kernel methods such as GP regression or SVR,
the results of the two types of methods are identical. The Kalman
filter can be interpreted as just an efficient way of computing GP re-

gression exploiting the special features of (low-dimensional) linear
state-space models. SVR is slightly different in that it typically uses
an ¢-insensitive linear loss function [8] which corresponds to a dif-
ferent likelihood model. For a quadratic loss, however, the output of
an SVR will be identical to the mean estimate of a Kalman smoother.
It is interesting to note that even without considering equivalence
of the underlying model assumptions, kernel methods can be re-
lated to Kalman filter-like algorithms. For dynamical systems, the
matrix RTR, whose inverse yields the covariance operator, is block-
tridiagonal. Ref. [48] propose an algorithm to invert such matrices in
linear time using a forward-backward scheme that is closely remi-
niscent of the Kalman smoother algorithm.

Considering system identification for linear ODEs, there exist
many different algorithms in the control community such as sub-
space identification, Fourier space methods or prediction error meth-
ods [27]. Statisticians classically use expectation maximization (EM),
which maximizes the marginal likelihood of the model, that is, the
likelihood of the observed outputs given the parameters with the
hidden states integrated out. The marginal likelihood can be effi-
ciently computed using a Kalman smoother. As for the case of state
estimation, all these methods are at least qualitatively equivalent to
kernel machine model selection algorithms. The marginal likelihood
is also used in GP regression for kernel selection. The cross-validation
error can be seen as an approximation of the negative marginal like-
lihood or the prediction error, which also links SVR regression to this
picture.

Since we have argued above that kernel methods are largely
equivalent to standard algorithms for treating DEs, we might ask
in which context may one benefit from using kernel methods. Ker-
nel methods are to be understood here as algorithms that explicitly
compute the kernel function and that perform batch inference by
minimizing/integrating an expression of the dimension m, where m
is the number of measured data points. Conversely, all classical al-
gorithms work sequentially, performing inference without explicitly
computing the kernel function.

For one-dimensional problems, that is, ODEs or dynamical sys-
tems, Kalman filter or graphical model-based methods concentrate
on the chain-like structure of the model. They give rise to many O(N)
algorithms for computing marginal means, marginal variances or the
marginal likelihood, where N is the number of discretization steps.
If only m measurements, m <N, are given, this effort can be reduced
to O(m) with a little precomputation, summarizing many small steps
without observations into one large step. In contrast, kernel-based
methods working with the full covariance matrix typically scale
around O(m3) for regression or computing the marginal likelihood.
Furthermore, such methods have to compute the kernel function for
the given dynamical system. Using the Fourier framework described
in Section 4.2, the fast Fourier transform takes O(NlogN) time, and



3282 F. Steinke, B. Scholkopf / Pattern Recognition 41 (2008) 3271-3286

using the state-space model, the kernel is given explicitly by Eq. (10).
One advantage of the kernel view for dynamical systems is that it
yields direct access to all pairwise marginal distributions, even for
non-neighbouring points, which is not obvious with sequential al-
gorithms.

For multidimensional problems, that is, in PDEs, the kernel
method’s view on the joint problem is more useful in practical
terms, since message-passing is difficult due to many loops and is
not guaranteed to yield the optimal solution [47]. However, in this
case, too, the kernel cannot be computed analytically but has to
be derived either through a fast Fourier transform or, in the worst
case, through matrix inversion, which scales like O(N3). If one aims
at estimating the whole latent function f : 4 — R, then direct
optimization of problem (1) may be advantageous in comparison
with computing the kernels first and then optimizing the kernelized
problem. For example, in graph-based learning one typically solves
the estimation problem directly in the so-called primal. However,
if the graph were given in advance and the labels of the nodes
were only uncovered at a later time, it would be advantageous to
precompute the kernel functions, since regression to yield all of
f:Z — R could then be performed in O(m3) instead of O(N3).

In sum, one could say that the connection between kernels and
DEs will typically not yield faster or better algorithms, except in
a few special cases. However, it may help to gain deeper theoret-
ical understanding of both kernel methods and DEs. For example,
the connection presented shows that given a state-space model and
measurements, the posterior covariances between states at different
time points are not dependent on the observations; they are simply
given through the covariance matrix K. This insight is not obvious
from looking at the Kalman update equations. Conversely, the exis-
tence of an O(N) inversion algorithm for tridiagonal matrices is not
surprising when formulating the inversion in terms of a Kalman fil-
ter state estimation problem.

6.1. Nonlinear extensions

This paper has so far solely focused on linear DEs or equivalently
on linear regularization operators. However, there is great interest
in nonlinear models in many fields, and it is natural to ask whether
any of the insights presented above carry over to such a situation.

The disappointing answer is that most of the results are critically
dependent on the linearity assumption. If R is not a linear operator,
then ||Rf|| does not define a norm. Also, interpreting the kernel as
the Green’s function of RTR, that is, the solution of RTRK xi =0x;, does
not make sense, since the solution of nonlinear differential problems
Rf = u cannot in general be represented in terms of a linear sum
of such Green’s functions as in the linear case. Also, corresponding
probability distributions over functions f : # — R are then, in gen-
eral, not Gaussian any more, and often cannot be described through
an analytic expression at all.

Kernel methods are sometimes used for nonlinear systems, typ-
ically in the form that x;, 1 =f (%;), where f : R" — R" is described
by a kernel regression. However, such kernel methods should not be
mixed up with the type of kernels we discussed here, since in this
paper the kernels were functions of time, not of the preceding state.
Furthermore, such one-step-ahead prediction with kernels is not as-
sociated with a Gaussian process over trajectories in ., nor does it
yield an SVR problem of type (1) over trajectories.

While these are strong negative statements, the dual view of
DEs—either in terms of local conditional distributions or more
kernel-like as joint distributions over whole functions—may still
help to shape intuitions for the nonlinear case and may help to
develop new approximate inference algorithms. For example, [49]
investigate the joint N-dimensional state distribution of a non-
linear DE, and approximate it using an N-variate GP distribution

corresponding to a low order linear DE. Their key calculation is
motivated in finite dimensions and is then extended to continu-
ous domains. Conversely, one could also ask whether sequential
inference schemes for nonlinear DEs such as the extended Kalman
filter, the unscented Kalman filter [50], or sequential Monte Carlo
methods [51] can be transferred to other, potentially multivariate,
nonlinear kernel-like problems.

7. Conclusion

We have presented a joint framework for kernels, RKHSs, Gaus-
sian processes and regularization operators. All these objects are
closely related to each other. Given the theoretical framework, it is
natural to see stochastic linear DEs as important examples of regu-
larization operators. We have discussed ordinary as well as partial
linear differential equations.

While the exposition is kept simple through the use of the fi-
nite domain assumption, note that most results also hold for infi-
nite/continuous domains and we hope the readers will be able to
realize this when making comparisons with existing work. An exact
treatment for infinite, continuous domains often requires advanced
mathematical machinery [21,22,26], and we have thus concentrated
on the finite dimensional case, which mostly yields qualitatively sim-
ilar results.

A good understanding of all the mentioned interrelations be-
tween different methods and communities will help the readers to
select suitable algorithms for specific problems and may guide their
intuition in developing new methods, for example, for dealing with
nonlinear DEs. One potential future application may be to explore
the meaning of kernel PCA [19] for kernels derived from dynamical
systems, which to our knowledge has not yet been studied.

Appendix A. Complex-valued functions and kernels

For finite domains %, complex-valued functions f : Z — C
are isomorphic to elements in CN = #. Some basics of linear alge-

bra in CN are as follows: Set f* =F. The inner product in cNis
f*g=Y;f(xi)g(xi) and thus satisfies f *g =g*f. A matrix A is called
symmetric or hermitian, if A* =AT =A. Hermitian matrices have real
eigenvalues 4; and an orthogonal basis of eigenfunctions {ui}i—

thus, f *Af is real for any f € .

Complex-valued algebra does not interfere with the kernel frame-
work. All definitions, theorems and proofs of Section 3 hold if the
functions are understood as complex-valued and the appropriate in-
ner product is used. For example the positive definite kernel condi-
tion then states that i joc_iazjk(xi, xj) >0, where the sum is real-valued,
since K is a hermitian matrix by assumption. We will not be more
explicit here, but just state the following theorem, that shows that
the complex-valued theory consistently reduces to the real-valued
one described in Section 3, if all involved entities are in fact real.

1,...N’

Theorem 12. With the notation of the SVR objective (3) and the
Representer theorem 8 the following holds: if the observation values

{yi|i =1, m} and the kernel K are real-valued and the loss term is
a non-decreasing function of |fy(xi) — yil, then the function fy : & — C

minimizing (3) is real-valued and additionally all coefficients a in
Theorem 8 are real.

Proof. Assume f=f® +if S e #, R 3 ¢ RV. Then

X ~ e 3T, _
W12 =18 2 w112+ 2305 ke W

=0, as K is real

(A1)
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is minimized for f S_o. Similarly, the loss term is minimized for
f 3 =0, since the loss of | f(xi) — yi|2 :(tﬁif R —yi)? +(5;if3)2 is by
assumption larger that the loss of [fm(xi) — yil2. Thus the combined
minimum is attained for f S_o.1tis Fx =Kxa and Ky is real and

positive definite, thus one-to-one. It follows that fy € R™ requires
acR™ O

Appendix B. The cpd world

Regularization operators R® which are not one-to-one motivate
the use of the cpd framework. For example, regularizing with the
first derivative yields zero penalty for all constant functions, thus R¢
cannot be one-to-one in this case.

Most kernel results in Section 3 can be extended to cpd ker-
nels. However, special care has to be taken of the null space of the
regularization operator. The description in this section will use the
complex-valued setting as introduced in Appendix A above.

B.1. The pseudoinverse
Consider a hermitian matrix A with orthonormal eigendecompo-

sition A = Y;uiZiu; . If A is not one-to-one, i.e. 3i : /;j =0, then we
can define the (Moore-Penrose) pseudoinverse of A by

AT = Z ui;uf.

Lemma 13. For A as above and P = Z{M:O}uiu}k the orthogonal
projection from # to the null space .V~ of A, we have

(1) (AT =A™,

(2) AATA=A,ATAAT =AT, and ATA=1 ..
(3) [P,A] = 0 where [A,P] = AP — PA;
(4) If 1 —P)A(1 - P) is positive definite on Nt then (1-P)AT(1-P)

is also positive definite on that subspace.

B.2. The cpd kernel framework

Fig. B1 depicts the most common objects for the cpd setting in
parallel to Fig. 3. The structures and interrelations are very similar
to the positive definite case, see Section 3.1, but a non-empty null
space of R requires a few changes.

Throughout this section we will assume that the regularization
operator R¢ : # — % is an arbitrary operator from .# to some lin-
ear space 4. We do not assume that it is one-to-one. We denote its
null space of dimension 0 <M <N as £ and let P be the orthogonal
projection from # to 2. If R® is not one-to-one, neither is R°*RC,
and we cannot define the covariance operator as the inverse of this
matrix. Instead, we redefine the covariance operator K¢ to be a sym-
metric positive semi-definite matrix, i.e.

fFIKf>0, Y¥feo. (B.1)

The covariance operator is then related to the regularization operator
R® as

K¢ =(RR°Y*. (B.2)

Note that the null space of K€ is also 2. The corresponding Gaussian
process pic(f) has the form

pe(f) =NUY(0,K®) o exp(~ 1 |RF ), (B.3)

where NU(.,.) is an unnormalized Gaussian density. If the dimen-
sion M of the null space £ is greater than zero, then pgc(f) cannot

Gaussian process

pre(f)

unnormalised

kernel function —
kX xA—C ™
cond. pos. def.

covariance operator , native space
K- AH—-H Il e

sym. pos. semi-def. semi-inner prod.

[k

regularization operator

R :AH—9

Fig. B1. Common objects in the cpd kernel framework and their interrelations.
Arrows denote that one can uniquely be determined from the other (the * denotes
that this connection is not unique). A semi-inner product is an inner product which
is only positive semi-definite.

be normalized since the density is constant in the directions of 2,
IR‘p|| = O for p € 2. However, an unnormalizable prior may nev-
ertheless be useful and lead to a valid posterior, if the likelihood
constrains possible functions f enough.

We define a semi-inner product (.,. )gc by

(f.8)ke =fTRERg=f K *g. (B.4)

A semi-inner product is an inner product which is only positive semi-
definite, the corresponding semi-norm ||.||gc is also only positive
semi-definite. The tuple (#,(.,.)c) then is not a Hilbert space, we
follow Ref. [26] and call it a native space.

(A ,(.,.)gc) can be converted into an RKHS in two ways: firstly, by
restricting the function space to (2, (... )e)- The second alternative
is to extend the inner product to (f,g)s = (f.g)kc +f *Pg, such that
(A,(.,.)s) is an RKHS.

When discussing cpd kernel functions there are some additional
subtleties not encountered in the positive definite case.

Definition 14. A symmetric function k¢ :  x & — C is called cpd
with respect to the linear space 2 < J, if for all distinct points
X1,....Xm € &, m<N, and all 0 # o € C™ with

m m
D %4p() =D ep*dy =0, vpe? (B.5)

m m
Z Z a0k (xi, X))

j=1

Il
-

~ m * ~ m
=a*K yo = (Z ociaxi) K[> ajaxj) >0, (B.6)
=1

i=1

where K€ is the operator given as I(Cij = k(xi, X}).
In other words, if f = Z;-L %idx;, & # 0, and f *p=0 Vp € 2, then
f*KCf>0. Or equivalent but shorter, K€ is positive definite on 2.

It is important to note, that the operator K¢ which is composed
from the cpd kernel function values is not necessarily equal to the
covariance operator K ¢, and there exists famous counter examples,
e.g. thin-plate spline kernel functions. The definition of a cpd ker-
nel function with respect to 2 just implies that K¢ be positive def-
inite on 21, it does not make any claim about the behaviour on 2.
For example, thin-plate spline kernels [26] yield matrices K¢ which
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have f *K€f <0 for some f e 2. This contradicts the positive semi-
definiteness assumption of the covariance operator K¢, which was
enforced since surely ||f||12(c =|RcfII2>0 for all f € #.

This problem can be circumvented by setting

K¢=(1-P)K‘(1-P). (B.7)

Due to the projection step the assignment of a cpd kernel function to
a covariance operator is not unique. If {pi}F LM is an orthonormal

basis of £, then Eq. (B.7) implies that
Kl.; = 5;,.(1 - P)K~C(1 ~P)dy,

“(xi, X; Zp, xi)(p K %)
S K P )pm(x) + 3 B, BP0 (B.8)
m

Im

Note that above we have made an important assumption that does
not in general hold for infinite domains and thus requires a slightly
different formalism when extended to this setting. We have assumed
that an Ly-type inner product exists in 5. While we could restrict
the space of functions 2 to Ly(Z’) for infinite domains, this is not
natural for our purposes. Since we aim at regularizing with ||R°f||
we only need this expression to be well defined. We do not need
that f itself has a finite L, norm, it could be an element of a larger
space than Ly(Z’). For example, using Z'= R and regularizing with
the first derivative we could include constant functions into J# even
though an L,-type inner product between two linear functions on
R does not exist. While for finite domains it is trivially 2 < Ly(%Z'),
Ref. [26] gives an account for more general function spaces »# and
infinite domains. Specifically, he uses a slightly different projection
for relating the covariance operator with the kernel function in Egs.
(B.7) and (B.8).
The results of this section are summarized in Table B1.

B.3. Support vector machines

Employing regularization operators which are not necessarily
one-to-one leads to SVR which is slightly different from the positive
definite case. As in Section 3.2, Lemma 7; we first present a useful
decomposition of an arbitrary function in # and then the represen-
ter theorem follows.

Definition 15. A set X = {xﬂi:l,...,m} c Z, m<N, of points
is called unisolvent with respect to the linear space # < %,
dim(2) <m, if the only solution for p(xj)=0withpe Z,i=1,...,m
isp=0.

Lemma 16. Given distinct points X = {xi|i: 1, m} m<N, which
are unisolvent with respect to 2, any f € A can be written like

m M

f=) ol + ) Bipj+p, (B.9)
i=1 j=1

where {p]} M is a basis of # and « € C™, B CM, and peH

are umquely determmed and satisfy the following conditions:

m m
Zocipj(xi)=p; (Zociéxi) =0, j=1,...,.M, (B.10)
i=1 i=1
p(xi)=0, i=1,...,m. (B.11)

Furthermore, ||f||KC can then be written as Hflch = oc*K§<z + |\P\|,2<c-

Table B1
Summary of the objects of the conditionally positive definite kernel framework and
their interrelations

Entity Symbol Relations
cpd Kernel func. k¥ x2—-C ke (xi, x;) —K°© ij
Covariance op. K :H > H K¢ =(1-P)K‘(1—-P)
K¢=(R“"R)"
Native space (. )ge: H x H —C (f.8)kc =F *K"g=f *R"R‘g
Ille.: # — R I flke = (Ff e = IR
Gaussian process pie : A — R pie(f)=NUY(0, K )
Pre(f) o exp(—3 I flle)
Pe(f) o exp(— 3 IRf112)
Regularization op. RC:H -9 =VvK°" not unique)

Note that condition (B.10) ensures that 2}11 0i0x; € 2. Further-
more, it is Y} 0K = K€ (3] 2idx;), and K, and K ©; just differ
by an element of Z. Thus, one could replace K)fi in Eq. (B.9) by K ©x;
without changing the expression. Practically that means that we can
work directly with the cpd kernel function when performing SVR
regression and do not have to use the more complicated expression
(B.8) which includes projections.

Proof. The theorem states that f(x;) = ] 1 Jl(ﬁ + Z}i] ﬁjp(xi), i=

1,...,m, where Zl 1oc,pj(xl) 0,j=1,...,M. In matrix notation this is

ke (* Kg T\ (a _(fx
ext\ g T X 0/)\p 0
with T € C™M defined by T;; =pj(xi). This system is uniquely solv-

able for (a, B) because of the following argument due to Ref. [26, p.
117]: Suppose that (a, ) lies in the null space of K&, .. Then we have

(B.12)

ext:

Kgo+TB=0,
T *a=0.

I(§ is positive definite for all « that satisfy the second equation.
Multiplying the first equation by a* yields 0 = a*Kga + (T *a)*f =
¢ )%ac. Due to positive definiteness, we can conclude that « =0 and
thus TS = 0. Since X is a unisolvent set of points, this implies ff = 0.

Returning to the inhomogeneous system (B.12) it can be shown
[24] using block matrix inversion theorems that
a=(Ky— KgT(T *K§T)+T *K) fx, (B.13)

B=(T*KST ) T *KS fx. (B.14)

Finally, set p=f — Y"1, 0iK§,; + ZJ-ALﬁjpj. ]

Using this decomposition, the representer theorem for cpd ker-
nels is straight-forward as in the positive definite case.

Theorem 17 (Representer theorem). Given distinct, unisolvent points
X= {x,‘|i= 1,...,m} c 2, m<N, and labels {yi|i= 1,...,m} cC,Ce

R, the minimizer of
If e + C Loss({(xi,yi, f(xi))li=1,...,m}) (B.15)

has the form f, g = YKy + Zjlﬁlﬁjpj. aeC™, B e CM minimize
the expression

a*Kyo + C Loss({(xi,yi, f(xi))li=1,...,m}) (B.16)
subject to the conditions

m [

D wipj(xi)=0, j=1,..,M. (B.17)
i=1
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B.4. GP inference

The decomposition in Lemma 16 is also the key to compute the
marginals of an unnormalized Gaussian process. As in Section 3.3 we
will call this the GP representer theorem for the cpd case.

Theorem 18. For X € Z unisolvent with respect to 2, the marginal dis-
tribution pygc(fyx) « NU(0,M™) under the joint GP pre(f) « NU(0,K)
is given by

M=K — K{T(T *KyT)*T *Ky, (B.18)

where {pj}jzl" is a basis of # and T; =pj(xi).

.M

Proof. By Lemma 16 any f €  can be written as f = Z?;]ocil(,fi +
Z}‘i] ﬁjpj + p where p(xi)=0,i=1, ..., m. Therefore p is independent
of fx. Furthermore with Eq. (B.13) it is

If12c = Ko+ I pli2c
=R (KG — KGT (T*KGT YT *KG)fx + lplge
=FXMfx + 1plZc.

From that it follows that
1
pUrx) o [ exp (-5 IRFIZ) df g x
1 1
o exp (~ 3 FiMifx ) [exp (=5 10 ) df g x

=const

1
o exp <—§f)2‘M;fX). O

B.5. Transitions between the cpd and the positive definite world

Imagine a family of regularization operators Ry : # — % contin-
uously parameterized by 0 € U where U C R is an open neighbour-
hood of 0. Assume that Ry is one-to-one for all 0 except for 0 = 0.
Thus, for 0 = 0 we have to use the cpd framework, for 0 # 0 we
should use the positive definite scheme. However, the limit of K for
0 # 0 — 0 is not equal to 1(5:0. The limit does not even exist since
in the positive definite case the kernel is the inverse of R*R which
diverges for 6 — 0. On the other hand, the SVR objective function
V(0.f ) = IRy f11? + C Loss({(xi, yi. f(xi))li = 1,...,m}) (B.19)
depends continuously on 6. Thus one might hope that the minimizer
also depends continuously on 0.

The following theorem which is novel to our knowledge shows
that this apparent problem of continuity can be resolved. It shows
especially that, while the kernel is diverging for 6§ — 0, the SVR
solution for 6 # 0 converges for § — 0, and that the limiting element
is equal to the cpd SVR solution for 0 = 0.

Theorem 19. Let Ry : # — % depend continuously differentiable on
0eUUe R4 an open neighbourhood of 0 and let Ry be one-to-one
if and only if 0 + 0. Let 2 be the null space of Ry_. Furthermore, let
X= {x,'|i =1, m} c %, m<N, be a set of distinct points unisolvent

with respect to & with corresponding observations {yi|i =1, m} c

C. The minimizer fg = arg min V(0,f ) depends continuously on 0, if
eH

Loss({(xi,yi,f(xi))li=1,...,m}) is strictly convex and twice continuously

differentiable with respect to the f(x;).

Proof. As a first step note that V(0,f ) is strictly convex in f for all 0 €
U. Both \|R9f||2 andLoss({(xi,yi,f(xi))li=1,...,m}) are convex with
respect to f for all 0. If 0 # 0 then \|R9f||2 is strictly convex and so is
the sum (“strictly convex + convex = strictly convex”). If § = 0 then
|\R0f||2 is constant in the direction of vectors p € 2. However, for
these p at least one of the p(xj), i=1,...,m, is not equal to zero since
X is unisolvent. Thus, the loss term is strictly convex with respect to
¢ where f. =f + ¢p, and so is the whole objective function.

Since V(0.f) is strictly convex in f and continuously differen-
tiable, the unique minimum for given 0 is determined by

F(O,f)E%V(O,f):O.

By assumption F : U x cN o cNis continuously differentiable and
(O/Of F(O.f ) = (82/0f 2)V(0.f ) is invertible since the objective is
strictly convex. Using the implicit function theorem [52, p. 292] there
exists a continuous function fy : U — # with F(0,fg)=0. O

Given this theorem one could argue that the cpd framework is
unnecessary: if the goal is to regularize with a non-one-to-one op-
erator R one could just use a slightly perturbed version of R which
actually is one-to-one and for which one could use the positive def-
inite framework. The solution of a SVR would then not differ very
much from the unperturbed result. However, if R*R is nearly sin-
gular the corresponding covariance operator K = (R*R)‘1 will have
some large values. Computations with such a kernel will then be nu-
merically unstable, and it is better to use the cpd framework instead.

Appendix C. Additional proofs

In the finite domains, »# with any inner product (.,.)s is an
RKHS, also with the usual L, inner product. To see this note that in
RN all norms are equivalent and |dx;(f)| = [f(xi)I < I.fll1 <ClIflls-

Proof (Lemma 5). (1) Riesz’s theorem.
(2) Since the functionals Jx; are linearly independent, so are
their representers Sx;. Then for o # 0 it is Zﬂ12jﬂllaiocjs(xi,xj) =

> eri] %i0j(Sxi, Sx;)s = -1 tiSx; H§ >0.

(3)Set T = (0x;, 5,(]. )s. Then for any f=>"if(xi)0x;, 8= Y_;8(Xi)0x;,
it s (£.8)s = X (4804 0y )s = X1 (xi)g(x)Ty = F T

(4) Using the reproducing property on dx;, 51’]':(59(1" 5Xj )S:E,T(,.STéxj
and 5,~j = (6x,~,ij )s = 6,2.136,(]. for all Xi,Xj € Z implies the claim.

(5) Since necessarily S = T-land T uniquely defines the inner
product, the last claim follows. [

Proof (Lemma 7). f is the sum of a part f, in the span of the Ky;, xj €
X, and the K-orthogonal complement p. The orthogonality condition
(Kx;, p)x = 0 implies p(xi) = 0. Since K is positive definite, so is the
submatrix Kx. Therefore the system fy = Kxa is uniquely solvable
fora e R™. O

Proof (Theorem 8). Following Lemma 7, and f € 2 can be written
as f =fq + p with (fy, p)x =0. The objective can then be written as

dTKX“ + ”p”IZ( +C LOSS(Xi,J/i.fa(Xi))i:] m’

The loss term is independent of p because p(xj)=0,i=1,...,m, and
thus the objective is minimized for p = 0. Convexity of the loss and
the uniqueness of the map between f, and «, Lemma 7, imply that
the whole objective here is convex in a. Thus, the minimum is unique
in this case. O
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